

TALLER DE CONSTRUCCIÓN Y OPERACIÓN DE RELLENOS SANITARIOS

TALLER DE CONSTRUCCIÓN Y OPERACIÓN DE RELLENOS SANITARIOS

No.	Módulo	Presentador
1	La Importancia del Manejo Adecuado de Rellenos Sanitarios	P. Ruesch
2	Construcción de Rellenos Sanitarios Parte I	M. Elizondo
3	Construcción de Rellenos Sanitarios Parte II	J. Dávila
4	Operación de Rellenos Sanitarios Parte I	M. Elizondo
5	Operación de Rellenos Sanitarios Parte II	M. Elizondo
6	Fundamentos del Biogás y Sistemas de Captura de Biogás	J. Dávila
7	Tecnologías para Aprovechamiento de Biogás	J. Dávila
8	Cierre o Conversión de Vertederos a Cielo Abierto	P. Ruesch

Módulo No. 6 Fundamentos del Biogás y Sistemas de Captura de Biogás

Ing. José Luis Dávila, Consultor

Visión General

- Biogás de Rellenos Sanitarios
- Sistema de Captura y Control del Biogás

Biogás

- Se produce por la descomposición de los residuos sólidos
- La cantidad y composición dependen de las características de los residuos sólidos
- El aumento en la cantidad de materia orgánica equivale a un aumento en la generación de biogás
- La producción de biogás se acaba cuando se termina la descomposición.
- Puede utilizarse para generar energía

Biogás: Composición Típica

- Metano (CH₄)
 - 50% a 60%
- Dióxido de Carbono (CO₂)
 - 40% a 50%
- Compuestos Orgánicos No-Metánicos (NMOCs)
 - Trazas
- Valor Calorífico
 - 500 Btu/pies cúbico Standard (scf) = 4166 kCal/Nm³
- Contenido de Humedad
 - Saturado

Metano (CH₄)

- Incoloro
- Inodoro e Insípido
- Mas ligero que el aire
- Relativamente insoluble en agua
- Altamente explosivo
 - Limite Inferior de Explosividad = 5% en el aire
 - Limite Superior de Explosividad = 15% en el aire

Metano (CH₄)

- ¿Por qué el metano es un gas de efecto invernadero?
 - El metano absorbe la radiación infrarroja terrestre (calor) que, de otro modo, escaparía al espacio (característica de GEI)
- El metano es un GEI 23 veces mas potente por peso que el CO₂
- En cualquier momento, el metano es mas abundante en la atmósfera ahora que en los últimos 400.000 años y 150% mas alto que en el año 1750.

Estimación de la Generación del Biogás

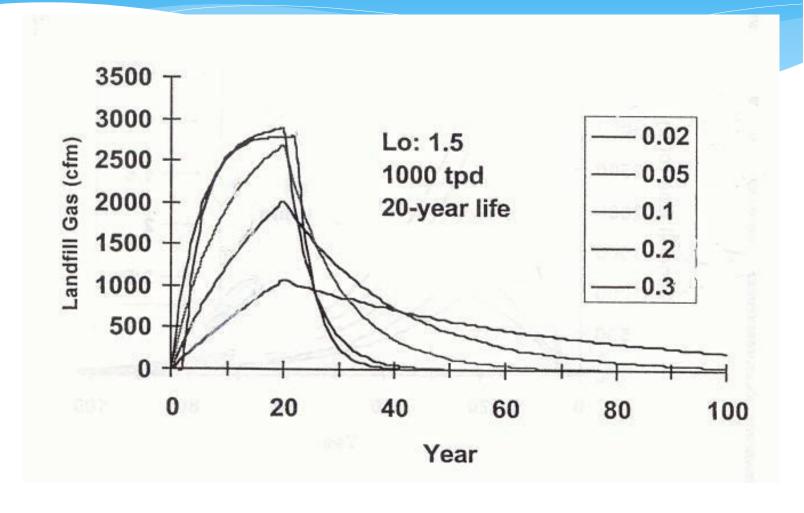
El Modelo LANDGEM
Environmental Protection Agency (EPA)

Generación de biogás = 2 k L0 M e-kt

donde:

k = Índice de generación de metano (1/año)

L₀= Generación potencial de metano (m³/ton)

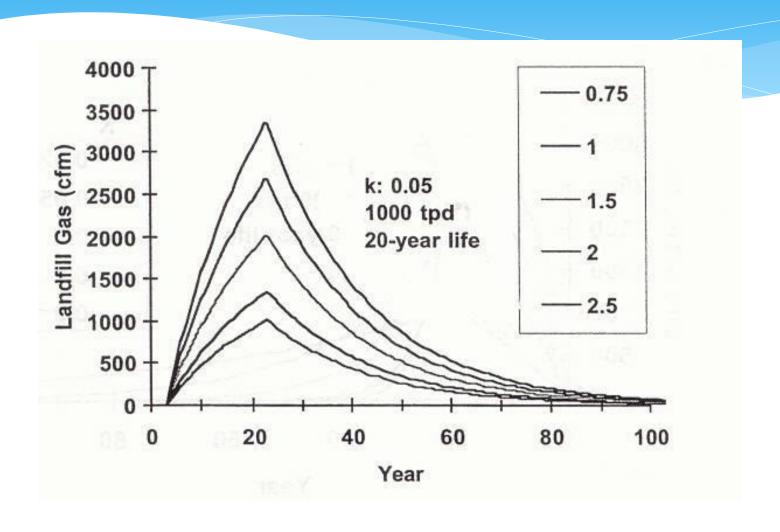

M = Cantidad de residuos depositados por año (tons)

t = Número de años (Edad) de los residuos (años)

El Valor de "k"

- "k" índice de generación de metano (unidades = 1/año) – fracción de los residuos que se degradan y producen metano en un año
- El valor de k esta en función de la humedad de los residuos, nutrientes, pH y temperatura.
- El rango típico es de 0.01 a 0.10

Efecto del valor de k



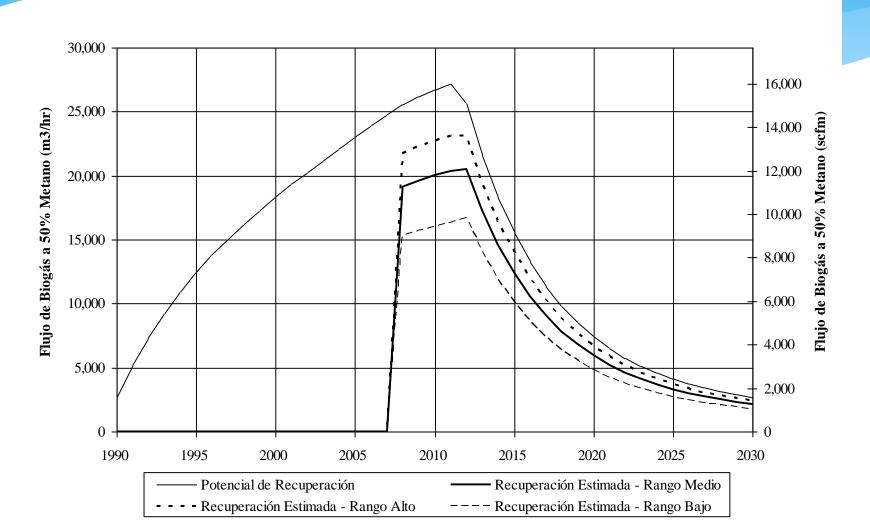
El Valor "L₀"

"L₀" – Generación potencial de metano (unidades = m³ de metano por tonelada de residuos). Es la cantidad de metano estimada que una tonelada de residuos puede producir en cierto tiempo

- El valor de L₀ esta en función del contenido orgánico en los residuos. El bajo contenido de humedad en los residuos podría limitar L₀
- U. S. EPA estima el valor a 100 m³/Ton para los residuos en Estados Unidos

Efecto del Valor de L₀

Variable "M"


La masa de residuos dispuestos por cada año de operación. Volúmenes estimados podrían ser convertidos a masa, si es necesario. Se necesita tomar en cuenta lo siguiente:

- Historial disponible pesos medidos o volúmenes estimados
- Índice de crecimiento para estimar disposición futura.
- Tomar en cuenta la disminución de la cantidad de residuos disponibles para producir biogás
- Si los estimados de disposición son derivados de volúmenes se necesita considerar la densidad insitu de los residuos. Usualmente igual a 0.7 ton/m³

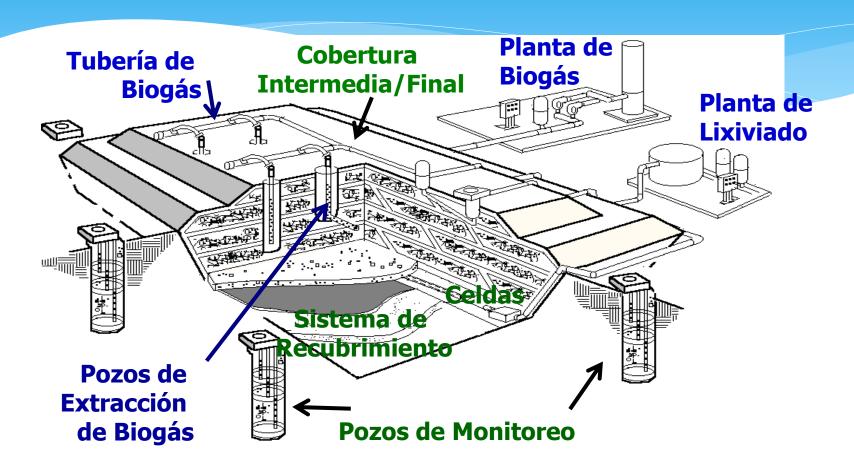
Variable "t"

- El modelo asume que la producción de biogás no existe en el primer año después de ser dispuestos los residuos
- El modelo asume que la generación de biogás llega a su máximo el segundo año después de que los residuos son dispuestos

Recuperación de Biogás

Estimación de la Generación del Biogás - Modelos

- EPA EEUU
 - LandGEM (v.3.02)
 - Modelo Colombiano de Biogás, 1.0
 - Modelo Mexicano de Biogás, 2.0
 - Modelo Ecuatoriano
 - Modelo Centroamericano de Biogás
- Modelo del Panel Intergubernamental de Cambio Climático (IPCC 2006).
- GasSim (UK)
- Modelo de Scholl Canyon.


Uso de los Modelos de Generación de Biogás de Rellenos Sanitarios

- Evaluaciones y proyecciones sobre el uso del biogás.
- Estudios de pre-factibilidad.
- Diseño de sistemas de captura.
- Diseño de sistemas para la utilización.
- Propósitos regulatorios.

Factores Principales que afectan la Producción de Biogás

- Cantidad de residuos depositados por año.
- Composición de los desechos.
 - Contenido de desechos orgánicos (fracción biodegradable).
 - Humedad en los desechos.
 - Tasa de degradación de los residuos.
 - Temperatura de la masa de residuos.
- Precipitación anual del sitio.
- Operaciones y mantenimiento que afectan la generación del biogás.
 - Compactación.
 - Cobertura diaria.
 - Control de lixiviados.
 - Cobertura final.

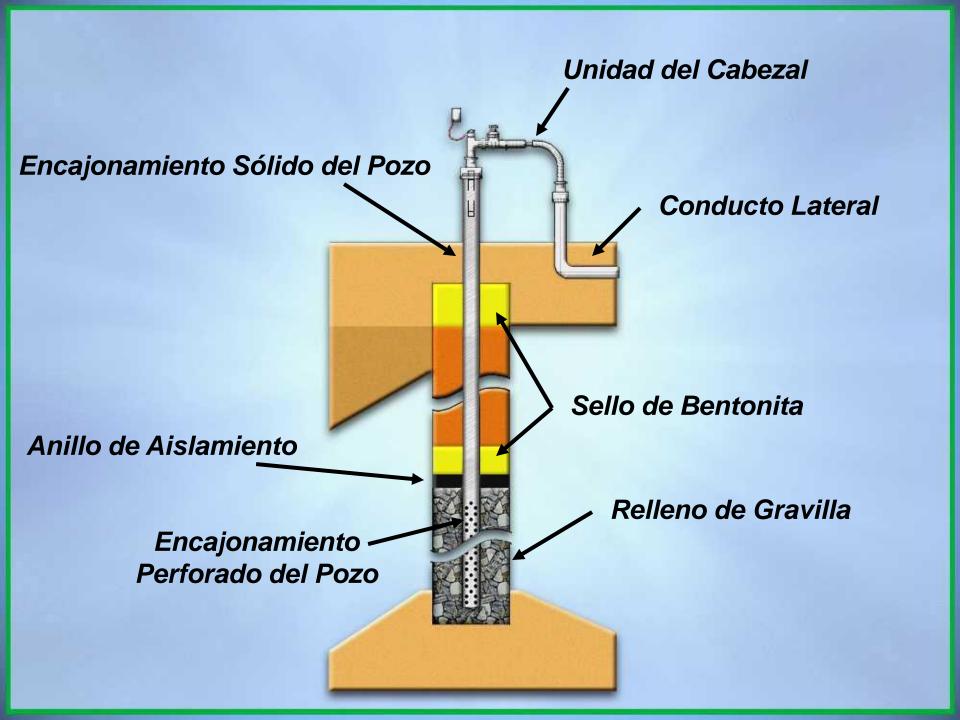
Relleno Sanitario Moderno

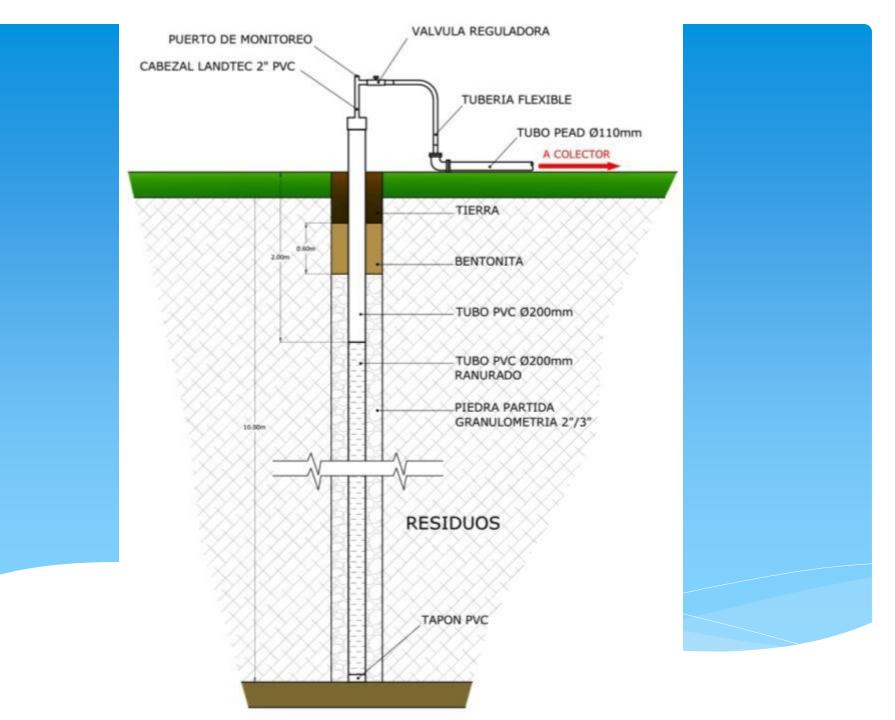
Objetivos de los Sistemas de Captura de Biogás

- Control de la Migración
- Control de Olores
- Control de Emisiones (GEIs)
- Protección de las Aguas Subterráneas
- Mantener la estabilidad del relleno
- Recuperación de Energía
- Cumplir con la legislación

Captura y Control del Biogás

- Modos y métodos de controlar el biogás
 - Pasivo
 - Activo
- Sistema de monitoreo y control del biogás en el perímetro del relleno sanitario

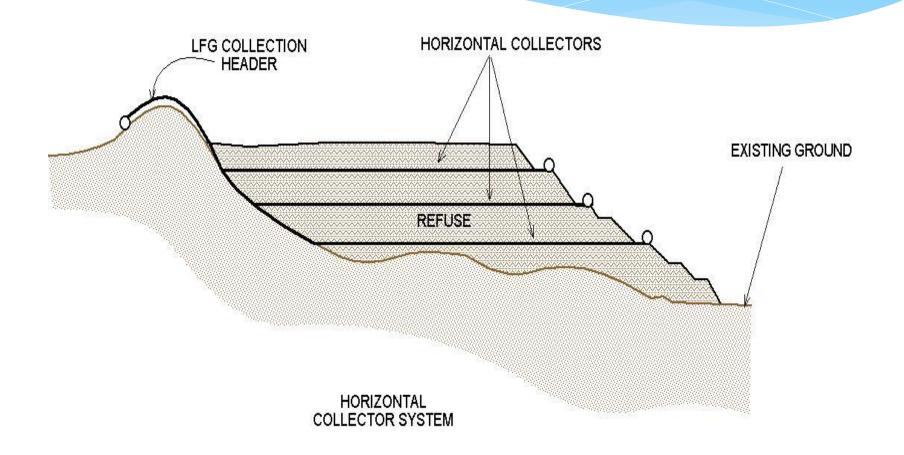

Componentes del Sistema de Captación de Biogás


- Pozo de Extracción
 - Verticales
 - Colectores Horizontales
- Cabezal del Pozo de Extracción
- Colector Lateral
- Trampas de Condensado
- Colector Principal
- Cárcamo de Condensado
- Estación de Quemado

Pozos de Extracción Verticales

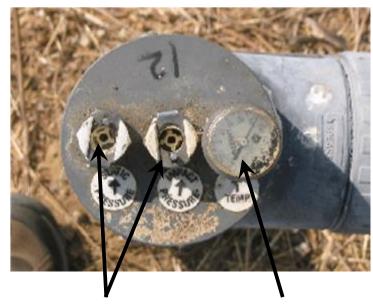
- Método mas común de la captura de biogás.
- Se instala en áreas de disposición existentes o en operación.
- Profundidad ideal de los residuos > 10 metros

Ejemplos de Pozos de Captación Verti



Colectores Horizontales

- Un método alternativo para la captura de biogás.
- Se instala en áreas con residuos poco profundos.
- Se instala en áreas de disposición existentes o en operación.
- Puede ser utilizados en rellenos sanitarios con altos niveles de lixiviados.
- Pueden ser una alternativa cuando se instalan a conforme el relleno sanitarios va avanzando en profundidad.


Arreglo Típico de los Colectores Horizontales

Cabezal del Pozo de Extracción

Válvula para regular succión

Presión

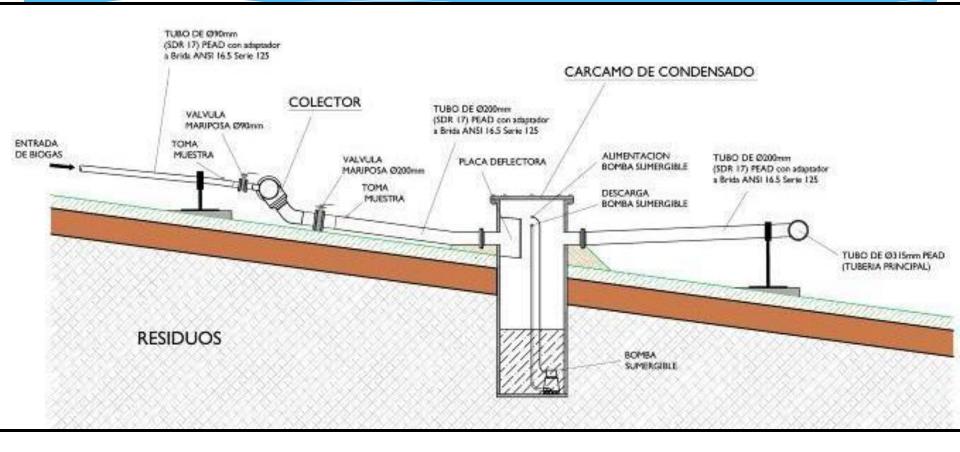
Temperatura

Puertos de Monitoreo

Tubería Lateral

Tubería Principal

Condensado


- ¿Que es el condensado?
 - Líquido producto del enfriamiento del vapor de agua contenido en la corriente de biogás.
- Consecuencias de manejos inadecuados de líquidos condensados
 - Pozos inundados.
 - Poco vacío en los pozos.
 - Obstrucción de la red de tubería de captación.
 - Se incrementan los costos operativos.

Cárcamo de Condensado

Tuberías laterales provenientes de los pozos de extracción

Cárcamo de Condensado

Estación de Quemado

- Eliminador de Humedad
- Bomba de Succión e Impulsión
- Antorchas de Quemado
- Controles
- Sistema de Monitoreo (flujo y calidad de biogás)

Componentes

Eliminador de / Humedad

Bomba de Succión e Impulsión

Tubería Principal

Componentes Principales

Eliminador de Humedad

Bombas de Succión e Impulsión

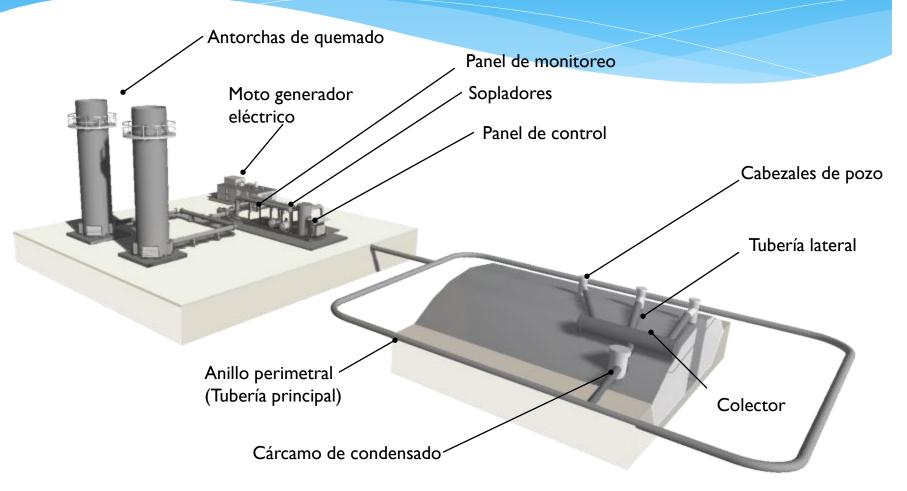
Componentes Principales

Cámara de condensado

Panel de control

Panel de monitoreo

Tipos de Antorchas de Quemado



Antorcha tipo "Cerrado"

Antorcha tipo "Elevado"

Sistema Integral de Captación, Tratamiento y Aprovechamiento de Biogás

Información en la Web sobre el Biogás

- EPA Programa LMOP www.epa.gov/lmop
- Asociación Internacional de Residuos Solidos (ISWA) <u>www.iswa.org</u>
- Banco Mundial <u>https://documentos.bancomundial.org/es/publication/documents-reports/documentdetail/954761468011430611/handbook-for-the-preparation-of-landfill-gas-to-energy-projects-in-latin-america-and-the-caribbean</u>

Estimación de la Generación del Biogas – Modelos

- * LandGEM (v.3.02) EPA, https://www.epa.gov/ttn/catc/dir1/landgem-v302.xls
- * Modelo Colombiano de Biogas 1.0 EPA, https://globalmethane.org/toolsresources/resource_details.aspx?r=2058
- * Modelo Centroamericano de Biogás –EPA, https://globalmethane.org/toolsresources/resource_details.aspx?r=5000
- Modelo Mexicano de Biogás, 2.0 EPA,
- Modelo del Panel Intergubernamental de Cambio Climático (IPCC 2006), http://www.ipcc-nggip.iges.or.jp/public/2006gl/vol5.html
- * GasSim(UK), http://www.gassim.co.uk/

Gracias por su Atención

Módulo No. 6
Fundamentos del Biogás y
Sistemas de Captura de Biogás – Parte II

Ing. José Luis Dávila,
Consultor Independiente
pepedavila@yahoo.com
+1 (602) 820-2972

TALLER DE CONSTRUCCIÓN Y OPERACIÓN DE RELLENOS SANITARIOS

